Abstract

The article presents an analysis of the influence of temperature-time parameters of heat treatment on the compressive strength of biocomposite materials, the compositions of which was dried to regulate the moisture content. The samples formed by pressing the prepared composition, based on an aqueous solution of glutin and chopped stalks of cereal crops with a fixed moisture content. Excess moisture content in the composition was reduced by processing in a thermal field at a temperature of 50…60 °C for 20…30 minutes. The main heat treatment was performed for the pressed composition in a press form with fixed fastening of punches to avoid elastic aftereffect. The heat treatment temperature was 150 °C, the exposure time was 2 hours. After 1 hour, the biocomposite material additionally compressed to seal the porous structure formed as a result of water evaporation under the influence of a thermal field. Biocomposite materials with additional heat treatment at a temperature of 50 °C for 4 hours have the highest compressive strength. Under this mode of heat treatment, water molecules slowly evaporate and a rigid framework of the biopolymer matrix with the maximum number of physical and chemical bonds between the components is formed. Increasing the temperature of additional heat treatment to 100 °C and reducing the exposure time to 3 hours reduces the compressive strength of biocomposites due to the deformation of macromolecule chains of the biopolymer matrix and the partial destruction of physicochemical bonds. It is expedient to use the developed biocomposite materials for the manufacture of packaging elements and containers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.