Abstract

Detecting target objects robustly in natural environments is a difficult problem in the computer vision and image processing areas. This paper suggests a method of robustly detecting target objects in the environments where reflection exists. The suggested algorithm first captures scenes with a stereo camera and extracts the line and corner features representing the target objects. This method then eliminates the reflected features among the extracted ones using a homographic transform. Subsequently, the method robustly detects the target objects by clustering only real features. The experimental results showed that the suggested algorithm effectively detects the target objects in reflection environments rather than existing algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.