Abstract

Aerodynamic characteristics have a major impact on the energy efficiency and traction and speed properties of the vehicle. In this article, based on previous studies of the aerodynamic characteristics of various car models, we propose an improved method for selecting engine and transmission parameters at the design stage. The aim of the study is to improve the dynamic properties of the car by improving the method of selecting the main parameters of the engine-transmission unit by refining the calculation of aerodynamic drag. To achieve it, the following tasks must be solved: to specify the method of selecting the maximum effective engine power; to specify a technique of definition of the maximum constructive speed of the car; to develop a technique for selecting gear ratios. The aerodynamic resistance to the movement of the vehicle is determined by the frontal coefficient of the specified resistance, the density of the air, the area of the frontal resistance and the speed of the vehicle. It is known from classical works on the aerodynamics of a car that in the range of vehicle speeds from 20 m / s to 80 m / s, taking the law of squares when assessing the force of air resistance, it is necessary to change the coefficient of frontal aerodynamic drag depending on the speed of the car. However, when carrying out calculations, this coefficient is taken constant, which leads to obtaining large values of the air resistance force at high speeds and lower at low speeds. There are two possible ways to improve the dynamic properties and energy efficiency of the car during its modernization (increasing the maximum design speed of the car by reducing the gear ratio in higher gear; reducing the maximum efficiency of the engine while maintaining the previous gear ratio in higher gear). As a result of the study, the method of selection (maximum effective engine power; maximum design speed of the car; gear ratios) at the design stage of the parameters of the motor-transmission unit of the car has been improved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call