Abstract
Physical spline is a resilient element whose cross-sectional dimensions are very small compared to its axis’s length and radius of curvature. Such a resilient element, passing through given points, acquires a "nature-like" form, having a minimum energy of internal stresses, and, as a consequence, a minimum of average curvature. For example, a flexible metal ruler, previously used to construct smooth curves passing through given coplanar points, can be considered as a physical spline. The theoretical search for the equation of physical spline’s axis is a complex mathematical problem with no elementary solution. However, the form of a physical spline passing through given points can be obtained experimentally without much difficulty. In this paper polynomial and parametric methods for approximation of experimentally produced physical spline with large deflections are considered. As known, in the case of small deflections it is possible to obtain a good approximation to a real elastic line by a set of cubic polynomials ("cubic spline"). But as deflections increase, the polynomial model begins to differ markedly from the experimental physical spline, that limits the application of polynomial approximation. High precision approximation of an elastic line with large deflections is achieved by using a parameterized description based on Ferguson or Bézier curves. At the same time, not only the basic points, but also the tangents to the elastic line of the real physical spline should be given as boundary conditions. In such a case it has been shown that standard cubic Bézier curves have a significant computational advantage over Ferguson ones. Examples for modelling of physical splines with free and clamped ends have been considered. For a free spline an error of parametric approximation is equal to 0.4 %. For a spline with clamped ends an error of less than 1.5 % has been obtained. The calculations have been performed with SMath Studio computer graphics system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.