Abstract

In this work the isothermal flow field generated by the interaction of an internal swirling jet with an external parallel flow is experimentally investigated with the use of 2D Digital Particle Image Velocimetry. Swirl is produced through tangential injection of air. Parametric change of inlet flow rates (constant tangential injection with change of annular flow and vice versa) is being considered in order to study the mean and turbulent flow field. Coaxial swirling jets are widely used in combustion systems as they enhance fuel and oxidant mixing and flame stabilization. Amongst well known features of introducing swirl in jet flows (increase of jet growth, entrainment and decay), highly swirling jets have been studied in combustion configurations as they impose radial and axial pressure gradients generating an internal toroidal recirculation zone, a phenomenon known as “vortex breakdown”. The complex structure of vortex breakdown has been a challenging issue for experimentalists over the past few decades emphasizing on its effect on aerodynamic and mixing attributes of combustion flow fields. Focusing on the study of coaxial swirling jets, rather limited data has been presented up to now, regarding the topology and turbulent attributes of the flow field created by coaxial jets with inner and/or outer swirl. Following previous work on coaxial swirling jets with inner or outer swirl and coaxial jets without swirl which lead to recirculation, a sufficient need for a deeper understanding of the physical mechanisms developing in such complex flow fields, comes up. This Thesis stands as an attempt to present the main features of such a complex flow field, which results from the interaction of a typical swirling jet undergoing “vortex breakdown” with an outer annular flow with “back step flow” characteristics. An analysis of the mean and turbulent flow statistics is presented, correlating flow field mechanisms with the three dimensional shear layer characteristics and the topology of the recirculating flow field (recirculation bubble, vortex ring). Research on vortex breakdown phenomena has led to a parallel research on the critical parameters that could determine whether vortex breakdown will occur. The definition of non-dimensional parameters (Swirl/ Rossby number etc), mainly based on the correlation of axial and azimuthal velocities or momenta, has been an issue of scientific interest that has often led to different approaches and criteria for vortex breakdown prediction. Additionally, it is seen through literature review that predicting vortex breakdown is not by itself adequate to characterize the mean and turbulent features of the recirculating flow field. In the case of coaxial jets, with or without swirl, previous studies have shown that the flow field created is strongly affected not only by the velocity or mass flow ratio of the jets but also by the absolute values of the jets’ velocities or the velocity jump between the two streams. For the case of coaxial swirling jets it is apparent that the interaction between the shear layers (mainly azimuthal and axial) is the key to understand the features of such a complex flow field. Through the similarity study conducted within this Thesis, a modified Rossby number is proposed as a parameter sufficient to describe the flow field’s trends. The modified Rossby number correlates the pressure drop due to fluid entrainment to that due to the rotation of the inner swirling jet. Presentation of the experimental results breaks down into two main sections; the first one where the effect of inlet conditions on the recirculating flow field mean and turbulent characteristics is discussed and the second one dealing with the interaction between the azimuthal and longitudinal shear layer. Through the analysis of the recirculation bubble effect on flow field attributes, emphasis is given into the characterization of intense mixing and turbulence regions. Additionally, the interaction between the azimuthal and longitudinal shear layer is studied through a similarity approach, utilizing boundary layer non-dimensional scales. Finally, mixing between the two flows is studied in terms of angular momentum diffusion by introducing a non dimensional parameter (λ). Results show a global effect of the proposed Rossby number on the flow field attributes, such as the recirculation bubble length and flow characteristics and the mixing of the two flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.