Abstract

The mathematical modeling of flotation process has been considered in this paper. It has been pointed out that in the event when there are different types of pollutants in water the generation of bubbles with wide size-consist is needed. A flotation setup with ejection aeration system having a disperser that allows generate the bubbles which size-consist is characterized by several sets with their own values of average diameters is considered. The mathematical model for flotation process description taking into account the division of bubbles into several groups in sizes and hydrodynamic situation in flotation chambers has been proposed. Based on proposed model have been obtained other models describing extraction of certain waste, considering their properties, in such a case the initial model has been complemented by stages of other processes: settlement stage during flotation of suspended substances with density higher than water density, self-floating stage during flotation of contaminations with density less than water density, and reverse stages during flotation of hydrophobic-hydrophilic contaminations. The example of time definition for the process of water treatment from suspended substances and oil products has been presented. It has been demonstrated that it is possible to considerate the two-chamber flotation setup with ejection aeration system having a disperser as a sequence of reactors providing ideal mixing and displacement. Taking into account the equations for the reactors providing ideal mixing and ideal displacement, and the proposed models for description of process passing in cameras, have been received dependences for determination of concentrations and cleaning time in each camera. The importance of mathematical modeling for flotation setups designing has been pointed out. Application of scientifically based approach at design allows create setups having bigger profitability and compactness at achievement of the required efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.