Abstract

The problem of finding the best dimensions for the elements of magnetic systems of synchronous reluc-tance and inductor electric machines in an extended range of changes in load torque and power is considered. An algorithm for solving the problem is also proposed, involving the division of the elements of the magnetic system into two groups. The first group affects the magnitude of the torque pulsations, while the second does not affect this indicator. Such parti-tioning accelerates the process of convergence of the result. A method of sequential non-linear programming is proposed for resolving the problem. It has good convergence with minimal search time. Synthesis of finite element models of a syn-chronous reluctance machine with salient pole and anisotropic types of rotors, switched reluctance machine (SRD), ma-chine with field switching (FSDC), Vernier reluctance and double field Vernier reluctance machines was performed. It was shown that the proportion of winding copper relative to steel in the active part of the machines increases relative to conventional machines when operating in the nominal mode. On the contrary, this feature was manifested to a lesser extent when working in the zone of overloads in terms of torque. Electromagnetic loads increase with increasing power, equivalent to operating a machine of lower power in overload mode. It was shown that the sensi-tivity to the size of the air gap in Vernier reluctance machines is the highest in the class under study. Thus, with increasing power, the specific torque will increase significantly. On the contrary, the lowest sensitivity to the air gap value in ma-chines with one-sided gearing and distributed winding on the stator allows these machines to be made with a larger gap without compromising the specific torque.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call