Abstract

Introduction. Efficient and reliable operation of water intake structures within reclamation systems in Southern Russia and the North Caucasus is a challenging issue. In this article, we address the operational reliability of reclamation water intakes in the foothill areas of small rivers. Many water intake structures built on small rivers are in poor operating condition and, therefore, need improvement and complete reconstruction. Methods. We performed analytical and field studies on the head structures of foothill reclamation systems. Based on the results, we identified the reasons for the low efficiency and reliability of old water intake structures. Since it is impossible to improve these water intake structures, new types and designs of high-performance water intakes are required. Therefore, we propose some original types of underground horizontal and underflow water intakes and determine corresponding technical parameters and performance criteria. Results. Due to low efficiency as well as high energy and material consumption of existing water intake structures, it is required to significantly reduce the cost of supplied irrigation water by introducing new types of high-performance water intake structures. Based on the studies of alluvial regimes of rivers and retention basins as well as hydraulic regimes of head water intake structures, we prepared design and process solutions that help control sediment effectively, increase the water intake coefficient, and regulate water supply to irrigation canals. The design features of new water intakes have a beneficial effect on river flows and the quality of irrigation water. Conclusion. The study results confirm the high performance and manufacturability of the proposed horizontal and underflow water intakes protected by patents for inventions. This year, our designs have been included in the state grant program for the development of standard hydraulic structures within reclamation systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.