Abstract

The main initial-boundary (mixed) problems are considered for a nonlinear system of equations for one-dimensional gas ionization in the case of constant velocities of gas atoms and ions arising as a result of ionization. The unknowns in this system are the concentrations of atoms and ions. A general formula is found for a sufficiently smooth solution of this system depending on time and spatial coordinate. It is shown that mixed problems for the system of one-dimensional ionization equations admit integration in the form of explicit analytical expressions. In the case of a mixed problem for a finite segment, an analytical solution is constructed using recursive formulas, each of which is defined in a triangle belonging to some domain of definition of unknown functions indicated in the triangulation work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.