Abstract

【Recent studies have been reported the presence of Endocrine Disrupting Compounds, Pharmaceuticals and Personal Care Products (EDC/PPCPs) in surface and wastewater, which could potentially affect to the complicate behavior in coupled presence of nano-colloid particles and surfactants (adsorption, dispersion, and partitioning). In this study, the adsorption of EDC/PPCPs by Single Walled Carbon Nanotubes (SWNTs) as a representative of nano-particles in cationic surfactant solutions were investigated. Hydrophobic interactions ( ${\pi}-{\pi}$ Electron Donor-Acceptor) have been reported as a potential adsorption mechanisms for EDC/PPCPs onto SWNTs. Generally, the adsorptive capacity of the relatively hydrophobic EDC/PPCPs onto SWNTs decreased in the presence of cationic surfactant (Cetyltrimethyl Ammonium Bromide, CTAB). This study revealed that the competitive adsorption occurred between CTAB cations and EDC/PPCPs by occupying the available SWNT surface (CTAB adsorption onto SWNTs shows five-regime and maximum adsorption capacity of 370.4 mg/g by applying the BET isotherm). The adsorption capacity of $17{\alpha}$ -ethinyl estradiol (EE2) on SWNT showed the decrease of 48% in the presence of CTAB. However, the adsorbed naproxen (NAP) surely increased by forming hemimicelles and resulted in a favorable media formation for NAP partition to increase SWNTs adsorption capacity. The adsorbed NAP increased from 24 to 82.9 mg/g after the interaction of CTAB with NAP. The competitive adsorption for EDC/PPCPs onto SWNTs is likely to be a key factor in the presence of cationic surfactant, however, NAP adsorption showed a slight competition through $CH_3-CH_3$ interaction by forming hemimicelles on SWNT surface.】

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.