Abstract

Using an atomic force microscope (AFM), adhesion forces between glass particles or AFM tips and hydrophilic or hydrophobic substrates were measured as a function of relative humidity (RH). The observed adhesion force between the glass particle and the hydrophilic substrate increased with RH, due to strong capillary condensation. In contrast, the adhesion force between the glass particle and the hydrophobic substrate was found to be almost constant for all RH, due to weak capillary condensation. The adhesion force between an AFM tip and a mica plate had a maximum value at a certain RH. This can be evaluated by calculating with consideration for the tip shape. On the other hand, the adhesion force for a silica plate increased drastically over a certain RH, and could be explained due to the surface roughness of the silica plate. The presence of nanometer scale roughness can play a critical role in the absolute value of the adhesion force between an AFM tip and the substrate in humid atmosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.