Abstract

Recent studies on ankle-foot prostheses used for transtibial amputees have focused on the adaptation of the ankle angle of the prosthesis according to ground conditions. For adaptation to various ground conditions (e.g., incline, decline, and step conditions), ankle-foot prostheses should first recognize the ground conditions as well as the current human motion pattern. For this purpose, the ground reaction forces and orientation angle of the tibia provide fundamental information. The measurement of the orientation angle, however, creates a challenge in practice. Although various sensors, such as accelerometers and gyroscopes, can be utilized to measure the orientation angles of the prosthesis, none of these sensors can be solely used due to their intrinsic drawbacks. In this paper, a time-varying complementary filtering (TVCF) method is proposed to incorporate the measurements from an accelerometer and a gyroscope to obtain a precise orientation angle. The cut-off frequency of TVCF is adaptively determined according to the human gait phase detected by a fuzzy logic algorithm. The performance of the proposed method is verified through experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.