Abstract

본 논문에서는 MPI(Message Passing Interface) 환경 하에서 채널배선 문제에 대한 분산 평균장 유전자 알고리즘(MGA, Mean field Genetic Algorithm)이라는 새로운 최적화 알고리즘을 제안한다. 분산 MGA는 평균장 어닐링(MFA, Mean Field Annealing)과 시뮬레이티드 어닐링 형태의 유전자 알고리즘(SGA, Simulated annealing-like Genetic Algorithm)을 결합한 경험적 알고리즘이다. 평균장 어닐링의 빠른 평형상태 도달과 유전자 알고리즘의 다양하고 강력한 연산자를 합성하여 최적화 문제를 효율적으로 해결하였다. 제안된 분산 MGA를 VLSI 설계에서 중요한 주제인 채널 배선문제에 적용하여 실험한 결과 기존의 GA를 단독으로 사용하였을 때보다 최적해에 빠르게 도달하였다. 또한 분산 알고리즘은 순차 알고리즘에서의 최적해 수렴 특성을 해치지 않으면서 문제의 크기에 대하여 선형적인 수행시간 단축을 나타냈다. In this paper, we introduce a novel approach to optimization algorithm which is a distributed Mean field Genetic algorithm (MGA) implemented in MPI(Message Passing Interface) environments. Distributed MGA is a hybrid algorithm of Mean Field Annealing(MFA) and Simulated annealing-like Genetic Algorithm(SGA). The proposed distributed MGA combines the benefit of rapid convergence property of MFA and the effective genetic operations of SGA. The proposed distributed MGA is applied to the channel routing problem, which is an important issue in the automatic layout design of VLSI circuits. Our experimental results show that the composition of heuristic methods improves the performance over GA alone in terms of mean execution time. It is also proved that the proposed distributed algorithm maintains the convergence properties of sequential algorithm while it achieves almost linear speedup as the problem size increases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.