Abstract

The questions of development a generalized algorithm for determining the parameters of the low circular orbit (LCO) of an Earth satellite (ES) based on the use of quadratic functionals are in the focus of this paper. The functionals represent the square of the differences between the measured values of the ES sighting angles and the frequency of the received signal with the values of the same parameters obtained for the assumed values of the Keplerian orbital elements in accordance with the adopted model of the ES motion. Estimates of the orbit parameters are formed from the condition of the minimum of the proposed quality functionals. The proposed algorithm is aimed at the developing two equations for the relationship between the measured values of the azimuth and elevation angles, as well as the frequency of the received satellite signal and the parameters of the satellite orbit. The use of the indicated constraint equations makes it possible to pass from the six-dimensional space of the Keplerian orbital elements to the four-dimensional space of the Keplerian orbital elements when constructing the algorithm and choosing the initial approximations of the orbit parameters. Such a reduction in the dimension of space makes it possible to significantly reduce the amount of computational expenditure, which ensures the stability of the algorithm and expands the possibilities of its practical use with limited resources (computing power and restrictions on the permissible processing time). The following Keplerian orbital elements are proposed as four basic parameters: eccentricity, ascending node longitude, orbital inclination, and perigee argument. The other two elements, the semi-major axis of the orbit and the mean anomaly, are expressed as functions of four basic parameters. This choice is determined by the fact that, in the case of LCO, the pivoting of the initial values of the eccentricity and the argument of perigee is quite simple, which makes it possible to ensure convergence to the exact values of the orbit parameters in a wide value of the initial approximations. Within the Keplerian approximation of the satellite's orbital motion, mathematical relations are presented that determine the operations performed within the framework of the considered algorithm. However, a more complete consideration of the factors influencing the motion of the satellite only leads to more volumetric relations, but does not fundamentally affect the construction of the algorithm itself.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.