Abstract
The paper considers the possibility of increasing the level of passive safety of the vehicle by development of solutions for strengthening the base of the body. The method to achieve this goal was mathematical modeling using topology optimization modules (Topology Optimization) as well as topographic optimization of sheet bodies of Altair Inspire software and LS-DYNA explicit dynamics of ANSYS. A side impact against a pole defined by UN ECE 135 was selected as the loading mode to test the effectiveness of the strengthening a body base. Efficiency criteria were energy intensity, defined as the ratio of the system energy to the residual (plastic) deformation at the level of the center of the door, and the residual living space. Based on the optimization results, three variants of the strengthening elements arrangement were obtained, one of which was further strengthened with aluminum foam. A comparative assessment of the effectiveness of the considered strengthening options was performed using the simulation results. The most effective option (with transverse stampings and foam) allowed increasing energy intensity by 57.5%. The assessment of the residual living space was carried out, the cutting out of which turned out to be possible only by one strengthening option: with transverse stampings with foam.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.