Abstract
It is well-known Levi-Chivita’s construction of object for affine connection (in modern terminology — linear connection) by the field of non-degenerate metric on a smooth manifold. An inverse problem (a construction of metric by given linear connection) is solved ambiguously, besides, the metric may turn out to be degenerate and indefinite. On the one hand, two metrics differing in a sign are obviously build: by curvature tensor contractionwith subsequent symmetrization. Оn the other hand, Vranceanu’s metric is a double contraction of multiplication of a torsion tensor’s components. In this paper Levi-Chivita’s inverse problem is solved in other way using the field of connection object. It is proved that in the general case, when the linear connection is not semi-symmetric, six metrics can be constructed. In the special case, when the linear connection is semi-symmetric (in particular, torsion-free), the constructed metrics vanish. The investigation is done on a semi-holonomic smooth manifold by means of two prolongation its structure equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.