Abstract

This study was aimed at estimating the erythrocyte electrophoretic mobility by investigating the effect of exogenous reactive oxygen species and nitric oxide on the blood specimens and organism of healthy rats. In the first (in vitro) experimental stage, blood specimens taken from 15 healthy people were analyzed. Each specimen was divided into 5 portions (5 ml.). One portion was used a as control (without any manipulations), with the rest being treated with different gas mixtures, including an ozone-oxygen mixture with the ozone dose of 60 mg/l; singlet oxygen and an NO-containing gas mixture with 20 and 100 ppm of NO. The second (in vivo) experimental stage was performed on 40 male Wistar rats divided into 7 groups. The first group (n=10) was considered to be a control group. Animals in the second group (n=5) were given daily inhalations with the ozone-oxygen mixture. Rats in the third and fourth groups (n=5 in each) received inhalations with singlet oxygen (under the power of the generator of 50 and 100%, respectively). Animals in the fifth, sixth and eleventh groups (n=5 in each) were given daily inhalations with nitric oxide (under the NO concentration of 20, 50 and 100 ppm, respectively). Our study has demonstrated the biosystems under study to exhibit identical response patterns both to direct (blood treatment) and indirect (inhalations) action of the investigated substances. Thus, the ozone-oxygen mixture and high doses of nitric oxide (100 ppm) are shown to result in a decrease in the electrophoretic mobility of erythrocytes. Alternatively, both low NO doses (20 ppm) and singlet oxygen stabilize erythrocyte membranes by elevating the antioxidant potential of the biofluid. These effects contribute to the activation of erythrocyte electrokinetic properties in vivo experiments (after a course of inhalations).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.