Abstract

The work consists of five sections and a bibliographic list. The first section provides answers to questions about the relevance, the applied value of the study, as well as the need to develop new approaches that allow modeling vortex structures in engineering practice. In the second section, some mathematical models and approaches used to solve problems of vortex dynamics are considered. The third section is devoted to solving the problem of determining the main parameters of the flow in the core of a vortex ring for given geometric dimensions. It is shown that a turbulent vortex ring is obtained as a result of the interaction of two vortex columns. The fourth section is devoted to methods for characterizing a concentrated vortex as a source of acoustic vibrations. As an object of research, the flow in the core of a turbulent vortex ring is considered. It is assumed that the core of the vortex ring has the shape of a torus. An approach is proposed that makes it possible to establish a strict link between the main flow parameters and the shape of the vortex ring. The aim of this work is to obtain the flow parameters in the core of a vortex ring with their subsequent substitution into the acoustic-vortex equation to analyze the source of acoustic oscillations. It is also necessary to show the presence of a structure in the vortex ring corresponding to some point symmetry and, thus, to abandon the concept of the circular symmetry of the core of the vortex ring. The proposed approach is based on the assertion that a vortex ring can be represented as a set formed according to a “rule” that determines a spatial geometric shape. As a result, an approach was proposed for analyzing the vortex ring as a source of acoustic oscillations, and it was also formulated and theoretically substantiated that the core of a turbulent vortex ring having the shape of a torus can be considered as a result of the interaction of two vortex columns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.