Abstract
본 논문에서는 인간의 감정 변화에 강인한 음성 인식 기술 개발을 목표로 하여 감정 변화의 영향을 적게 받는 음성 인식시스템의 특징 파라메터에 관한 연구를 수행하였다. 이를 위하여 우선 다양한 감정이 포함된 음성 데이터베이스를 사용하여 감정 변화가 음성 인식 시스템의 성능에 미치는 영향에 관한 연구와 감정 변화의 영향을 적게 받는 음성 인식 시스템의 특징 파라메터에 관한 연구를 수행하였다. 본 연구에서는 LPC 켑스트럼 계수, 멜 켑스트럼 계수, 루트 켑스트럼 계수, PLP 계수와 RASTA 처리를 한 멜 켑스트럼 계수와 음성의 에너지를 사용하였다 또한 음성에 포함된 편의(bias)를 제거하는 방법으로 CMS와 SBR 방법을 사용하여 그 성능을 비교하였다. 실험 결과에서 RASTA 멜 켑스트럼과 델타 켑스트럼을 사용하고 신초편의 제거 방법으로 CMS를 사용한 경우에 HMM 기반의 화자독립 단어 인식기의 오차가 <TEX>$7.05\%$</TEX>로 가장 우수한 성능을 나타내었다. 이러한 것은 멜 켑스트럼을 사용한 기준시스템과 비교하여 <TEX>$59\%$</TEX>정도 오차가 감소된 것이다. This paper studied the feature parameters less affected by the emotional variation for the development of the robust speech recognition technologies. For this purpose, the effect of emotional variation on the speech recognition system and robust feature parameters of speech recognition system were studied using speech database containing various emotions. In this study, LPC cepstral coefficient, met-cepstral coefficient, root-cepstral coefficient, PLP coefficient, RASTA met-cepstral coefficient were used as a feature parameters. And CMS and SBR method were used as a signal bias removal techniques. Experimental results showed that the HMM based speaker independent word recognizer using RASTA met-cepstral coefficient :md its derivatives and CMS as a signal bias removal showed the best performance of <TEX>$7.05\%$</TEX> word error rate. This corresponds to about a <TEX>$52\%$</TEX> word error reduction as compare to the performance of baseline system using met - cepstral coefficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Korean Institute of Intelligent Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.