Abstract
In this paper, we propose a novel approach to improve histogram equalization for speaker identification. Our method collects all speech features of UBM training data to make a reference distribution. The ranks of the feature vectors are calculated in the sorted list of the collection of the UBM training data and the test data. We use the ranks to perform order-based histogram equalization. The proposed method improves the accuracy of the speaker recognition system with short utterances. We use four kinds of speech databases to evaluate the proposed speaker recognition system and compare the system with cepstral mean normalization (CMN), mean and variance normalization (MVN), and histogram equalization (HEQ). Our system reduced the relative error rate by 33.3% from the baseline system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.