Abstract

무선 센서 네트워크의 다양한 연구 분야 중에서 철조망에서의 표적의 침입 탐지 및 식별에 관한 연구는 산업시설, 보안지역, 교도소, 군사지역, 공항 등 다양한 분야에서 사용된다. 현재 철조망 감시는 대부분 유선 센서 노드를 통한 유선 센서 네트워크 환경에서 이루어지고 있다. 기존의 유선 센서 네트워크는 100bps 이상의 높은 데이터 전송률을 통해 수신되는 높은 샘플링 신호를 이용하여 고속 푸리에 변환에 의한 신호의 주파수 분석 기법을 사용해 왔다. 하지만, 유선 센서 네트워크의 높은 데이터 전송률과 비교하여 무선 센서 네트워크의 센서 노드는 유선 센서 네트워크에 비해 매우 낮은 데이터 전송률을 가진다. 따라서 무선 센서 네트워크에서 수신되는 신호의 샘플링이 매우 낮고, 유선 센서 네트워크에서 사용된 고속 푸리에 변환에 의한 신호의 주파수 분석에 따른 주파수별 특징 추출을 할 수 없다. 따라서 본 논문에서는 철조망 감시를 위한 높은 데이터 전송률을 보장하는 유선 센서 네트워크에 비해 제한된 통신자원과 센서 노드의 낮은 데이터 전송률로 인해 수신되는 한정적인 신호의 정보를 이용한 무선 센서 네트워크에서 철조망의 표적 침입 탐지 및 식별을 위한 특징 추출 알고리즘을 제안한다. Various researches have been studied on WSN(wireless sensor network) for barbed wire entanglements surveillance applications such as industry facilities, security area, prison, military area, airport, etc. Currently, barbed wire entanglements surveillance is formed wire sensor network environment. Traditional wire sensor network guarantee high data transmission rate. Therefore, wire sensor network use fast fourier transform of data of high transmission rate for extraction of feature parameter. However, wireless sensor network in comparison with wire sensor network has very low data transmission rate. Therefore, wireless sensor network doesn't use fast fourier transform of wire sensor network for extraction of feature parameter. In this paper, proposed method use 1 level approximation coefficient of DTW(dynamic time-warped) algorithms based on DWT(discrete wavelet transform) for extraction of detection feature parameter and classification feature parameter for barbed wire entanglements surveillance. l level approximation coefficient have time information and frequency information of signal. Therefore, Dynamic time-warped algorithms based on discrete wavelet transform improve detection and classification of target rather than using energy of signal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.