Abstract

본 연구는 양돈슬러리의 혐기소화 효율 증진을 위하여 양돈슬러리를 고액분리 하고 이때 발생하는 슬러지케이크를 200, 220, 250, <TEX>$270^{\circ}C$</TEX>에서 각각 열가수분해 전처리하여 열가수분해 온도별 유기물의 가용화 효율과 혐기적 메탄생산 퍼텐셜을 분석하였다. 최종메탄생산퍼텐셜 (<TEX>$B_u$</TEX>)은 서로 다른 S/I 비율 (1:9, 3:7, 5:5, 7:3의 부피비)에서 73일간 혐기배양하여 구하였다. 양돈슬러리의 유기물 가용화율 (<TEX>$S_{COD}$</TEX>)은 <TEX>$200{\sim}270^{\circ}C$</TEX> 열가수분해 반응에서 98.4~98.9%를 보였으며, 열가수분해액의 이론적 메탄생산퍼텐셜 (<TEX>$B_{th}$</TEX>)은 반응온도의 증가와 함께 증가하여 <TEX>$200^{\circ}C$</TEX>, <TEX>$220^{\circ}C$</TEX>, <TEX>$250^{\circ}C$</TEX>, <TEX>$270^{\circ}C$</TEX>에서 각각 0.631, 0.634, 0.705, <TEX>$0.748Nm^3\;kg^{-1}-VS_{added}$</TEX>로 나타났다. 열가수분해액의 최종메탄생산퍼텐셜 (<TEX>$B_u$</TEX>)은 <TEX>$200^{\circ}C$</TEX>의 열가수분해액에서 S/I 비율이 1:9에서 7:3으로 증가할수록 <TEX>$0.197Nm^3\;kg^{-1}-VS_{added}$</TEX>에서 <TEX>$0.111Nm^3\;kg^{-1}-VS_{added}$</TEX>로 감소하는 경향이 나타났으며, 다른 열가수분해 반응 온도 (<TEX>$220^{\circ}C$</TEX>, <TEX>$250^{\circ}C$</TEX>, <TEX>$270^{\circ}C$</TEX>)에서도 <TEX>$200^{\circ}C$</TEX>의 열가수분해액과 동일한 경향의 최종메탄생산퍼텐셜을 나타내었다. 유기물의 혐기적 분해율 (<TEX>$B_u/B_{th}$</TEX>)을 보면, <TEX>$200^{\circ}C$</TEX> 열가수분해액은 S/I비율이 증가함에 따라 31.2%에서 17.6%까지 감소하였으며, <TEX>$220^{\circ}C$</TEX>, <TEX>$250^{\circ}C$</TEX>, <TEX>$270^{\circ}C$</TEX>의 열가수분해액에서 각각 36.4%에서 9.6%, 31.3%에서 0.8%, 26.6%에서 0.8%로 감소하는 것으로 나타나, 열가수분해 온도의 상승에 따라 유기물의 혐기적 분해능이 낮아졌다. 이러한 결과는 98% 대의 유기물 가용화율 (<TEX>$S_{COD}$</TEX>)을 보인 것과는 반대로 <TEX>$250{\sim}270^{\circ}C$</TEX>의 열가수분해액은 혐기소화에 분해저항성을 지니는 것으로 나타났다. The objective of this study was to investigate the organic solubilization (SCOD) and improvement of methane production for pig slurry by thermal hydrolysis. A sludge cake was pretreated by thermal hydrolysis at different reaction temperatures (200, 220, 250, <TEX>$270^{\circ}C$</TEX>). Ultimate methane potential (Bu) was determined at several substrate and inoculum (S/I) ratios (1:9, 3:7, 5:5, 7:3 in volume ratio) by biochemical methane potential (BMP) assay for 73 days. Pig slurry SCOD were obtained with 98.4~98.9% at the reaction temperature of <TEX>$200{\sim}270^{\circ}C$</TEX>. Theoretical methane potentials (<TEX>$B_{th}$</TEX>) of thermal hydrolysates at the reaction temperature of <TEX>$200^{\circ}C$</TEX>, <TEX>$220^{\circ}C$</TEX>, <TEX>$250^{\circ}C$</TEX>, <TEX>$270^{\circ}C$</TEX> were 0.631, 0.634, 0.705, <TEX>$0.748Nm^3\;kg^{-1}-VS_{added}$</TEX>, respectively. <TEX>$B_u$</TEX> of <TEX>$200^{\circ}C$</TEX> thermal hydrolysate were decreased from <TEX>$0.197Nm^3\;kg^{-1}-VS_{added}$</TEX> to <TEX>$0.111Nm^3\;kg^{-1}-VS_{added}$</TEX> with the changes of S/I ratio from 1:9 to 7:3, and also <TEX>$B_u$</TEX> of different thermal hydrolysates (<TEX>$220^{\circ}C$</TEX>, <TEX>$250^{\circ}C$</TEX>, <TEX>$270^{\circ}C$</TEX>) showed same tendency to <TEX>$B_u$</TEX> of <TEX>$200^{\circ}C$</TEX> thermal hydrolysate according to the changes of S/I ratio. Anaerobic biodegradability (<TEX>$B_u/B_{th}$</TEX>) of <TEX>$200^{\circ}C$</TEX> thermal hydrolysate at different S/I ratios was decreased from 32.2% for S/I ratio of 1:9 to 17.6% for S/I ratio of 7:3. <TEX>$B_u/B_{th}$</TEX> of <TEX>$220^{\circ}C$</TEX>, <TEX>$250^{\circ}C$</TEX>, and <TEX>$270^{\circ}C$</TEX> thermal hydrolysat were decreased from 36.4% to 9.6%, from 31.3% to 0.8%, and from 26.6% to 0.8%, respectively, with the S/I ratio change, respectively. In this study, the rise of thermal reaction temperature caused the decrease of anaerobic digestibility and methane production while organic materials of pig slurry were more solubilized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.