Abstract

Isophorone diisocyanate (IPDI), polycarbonate diol (PCD), dimethylol propionic acid (DMPA)를 출발물질로 하여 수분산 폴리우레탄(waterborne polyurethane dispersion, PUD)을 합성하였다. 이 PUD에 아크릴 단량체인 HEMA (2-hydroxyethyl methacrylate):MMA (methyl methacrylate), HEMA:BA (butylacrylate), HEMA:BMA (butyl methacrylate), HEMA:HEA (2-hydroxyethyl acrylate), HEMA:PETA (pentaerytritol triacrylate) 혼합물을 첨가하여 수분산 폴리우레탄-아크릴 혼성 용액을 제조하였다. 또한 아크릴 단량체의 종류가 수분산 폴리우레탄-아크릴 혼성 용액의 내약품성과 내마모성에 미치는 영향을 조사하였다. 실험 결과 내약품성은 HEMA와 MMA를 중합한 것이 가장 우수했으며, 내마모성은 HEMA와 PETA를 중합한 것이 가장 우수한 결과를 나타내었다. Waterborne polyurethane dispersions (PUD) were synthesized from isophorone diisocyanate (IPDI), polycarbonate diol (PCD) and dimethylol propionic acid (DMPA) as starting materials. Subsequently, polyurethane-acrylic hybrid solutions were prepared by reacting the PUD with different types of acrylate monomers, such as HEMA (2-hydroxyethyl methacrylate):MMA (methyl methacrylate), HEMA:BA (butylacrylate), HEMA:BMA (butyl methacrylate), HEMA:HEA (2-hydroxyethyl acrylate), HEMA:PETA (pentaerytritol triacrylate) mixture. Also, the effects of acrylate types on the chemical resistance and the abrasion resistance of polyurethane-acrylic hybrid solutions were investigated. The test results showed that the HEMA:MMA mixture had the strongest chemical resistance, while the HEMA:PETA mixture had the strongest abrasion resistance among several types of acrylate mixtures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.