Abstract

A comprehensive indicator of the reliability of electronic means - the coefficient of readiness, significantly depends on the average recovery time. At the same time, the largest labor costs are spent by repair specialists on finding a faulty element. Diagnostic repair support depends on the models used in the development of defect detection algorithms. The most common use of diag-nostic models is in the form of a graph of information and energy connections, which consists of three types of structures: sequential connection of elements, converging and diverging. The latter did not receive the necessary research. In the article as a result of research of influence of the form of the graph of information and power communications on indicators of quality of di-agnostic maintenance of radio electronic means analytical dependences of an estimation of deviation of the diagnosis at an expert error for converging and diverging structures are received for the first time. This allows to improve the quality of diagnostic software and to minimize di-agnostic errors when using current repairs by the aggregate method by assessing the impact of controlled variables at the stage of creating algorithms for finding defects. It is expedient to use the received results at improvement of diagnostic maintenance of existing radio electronic means and its development for perspective samples for the purpose of increase of quality of current repair irrespective of structure of a product.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.