Abstract

Recent studies support the contribution of oxidative stress in the development of cardiovascular diseases. Oxidative stress has been strongly linked to cell death and cardiac remodeling processes, all hallmarks of heart failure. Mice null for desmin, which is the major muscle specific intermediate filament protein, develop dilated cardiomyopathy and heart failure characterized by mitochondrial defects and cardiomyocyte death accompanied by extensive calcification and fibrosis, thus providing a very good model for heart failure. Several cellular and biochemical alterations in the hearts of these mice strongly suggested that oxidative stress is one of the mechanisms contributing to the pathogenesis of the phenotype. The defects in mitochondrial structure and function, hallmarks of the desmin null mouse phenotype, provide the most important indications for the existence of oxidative stress, as the respiratory chain is the most important source of reactive oxygen species (ROS) in cardiomyocytes. In order to delineate the existence of oxidative stress in the desmin null myocardium and therefore its participation in the development of the myocardial degeneration we sought both in vitro and in vivo approaches. The existence of oxidative stress was addressed in primary adult cardiomyocytes. The reinforcement of the antioxidant defense system was pursued, in order to assess the contribution of oxidative stress in the myocardial degeneration, as well as the therapeutic potential of antioxidant strategies. To assess intracellular oxidative stress a new method for the isolation of adult mouse cardiomyocytes was developed. Since mitochondria were the target of pathology, we wanted to first determine global changes in the mitochondrial proteome. The observed changes in protein levels reinforced the original hypothesis. Intracellular reactive oxygen species were measured using fluorescent probes in adult cardiomyocyte cultures. Analysis of the above data showed that there are increased levels of ROS in desmin null cardiomyocytes. Furthermore, the mitochondrial membrane potential, which is indicative of proper mitochondrial function, was investigated using a fluorescent probe. It was found altered in a subset of the desmin null cardiomyocytes. In order to (1) verify the existence of oxidative stress in vivo, (2) assess its contribution to the phenotype of desmin null mice and (3) evaluate the therapeutic 5 potential of protecting against it, the antioxidant defense system was fortified in vivo using the desmin null mouse as a heart failure model. Towards this goal transgenic mice overexpressing the antioxidant genes catalase and manganese superoxide dismutase (MnSOD) were created. Catalase detoxifies the cells from hydrogen peroxide by converting it to water and oxygen. Cardiac specific overexpression of catalase was brought to a desmin null background. The level of overexpression was assessed by measuring protein levels and enzyme activity. The cardioprotective effect of catalase was assessed in terms of fibrotic lesion extent, ultrastructure and cardiac systolic function. Overexpression of catalase in the heart of desmin null mice leads to marked decrease in intracellular ROS levels and significant decrease in fibrotic areas, ameliorates the myocardial degeneration and improves cardiac function. These data support the contribution of oxidative stress and in particular of the ROS hydrogen peroxide in the development of cardiomyopathy and heart failure in the desmin null mouse and underscore the therapeutic potential of catalase overexpression. MnSOD in localized in the mitochondrial matrix and converts superoxide anion to hydrogen peroxide. Cardiac specific overexpression of MnSOD was studied in a desmin null background. Overexpression of MnSOD only at moderate levels leads to a significant reduction of fibrotic lesion in the desmin null myocardium. Furthermore, an improvement of the myocardial ultrastructure was observed, as well as a moderate improvement of cardiac systolic function. These data suggest that another ROS, superoxide anion, contributes to the development of cardiomyopathy and heart failure in the desmin null mouse and that MnSOD, when overexpressed at moderate levels, offers cardioprotective effect. When the mice overexpressing MnSOD in the desmin null myocardium were challenged to exercise an absolute reduction of survival was observed. This defect was completely reversed when desmin null mice overexpressed both MnSOD and catalase. This suggests that hydrogen peroxide is an important mediator of the observed lethality. It is of note that MnSOD retains a contradictory antioxidant role, both breaking down and creating a specific ROS. It is therefore of paramount importance that this antioxidant enzyme is employed with caution and awareness of its deleterious effects. Overall, the data presented here demonstrate the contribution of oxidative stress in the development of inherited cardiomyopathy and heart failure, as well as the therapeutic potential of different antioxidant strategies, and their combination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.