Abstract

The Hishikari Mine consists of epithermal vein type Au-Ag deposits. The veins are extracted mainly by drifting and bench stoping with backfill. Blasted waste rocks are generally used as backfilling materials and crushed waste rocks with cement are used for larger stopes. Although backfilling controls the displacement of excavation surface and increases the stope stability, practical evaluation for stope dimension in conjunction with backfilling effects is not established. In this study, supporting effects of stope ends were evaluated and available support lines were drawn by using a three-dimensional elastic finite element analysis. Based on available support lines, the properties of backfilling materials were evaluated. The behavior of rock mass in bench stoping was compared with a two-dimensional elasto-plastic finite element analysis. The results indicated more remarkable influence on the stope stability with the backfill stiffness. The Young's modulus of the backfilling materials containing cement at the Hishikari Mine changed from 10 MPa to 1 GPa by numerical analyses and field measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.