Abstract

This paper introduces a thrust augmentation method for super- and hypersonic jet engines by means of applying water at the engine intake. This method expands the use of jet engines with subsonic combustion, allowing velocities up to Mach 8 and altitude up to 45 km. At velocities higher than 3–4 Mach, stagnation temperature of the air is getting higher than the critical temperature of water, which makes the existence of water at the gas turbine engine intake impossible. Water vapour as a working medium of a jet engine creates the so-called inner thermodynamic circle. This phenomenon defines the physics of the thrust augmentation method proposed. The author discusses three variants of hyper afterburner application: hyper afterburner turbojet, hyper afterburner ramjet, and hyper afterburner turbo ejecting engine. The presented basic specifications of the hyper afterburner engines qualitatively differ from those of their prototypes (engines without the hyper afterburner thrust augmentation function). The proposed thrust augmentation method of jet engines is of a special interest for the aerospace field, particularly, for creating air launch systems. It is shown that the application of hyper afterburner in turbo ejecting engines can increase velocity and altitude of the launch aircraft up to Mach 7 and 40 km respectively, thus opening new avenues in space exploration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.