Abstract
Recurrent neural network based language models (RNN LM) have shown improved results in language model researches. The RNN LMs are limited to post processing sessions, such as the N-best rescoring step of the wFST based speech recognition. However, it has considerable vocabulary problems that require large computing powers for the LM training. In this paper, we try to find the 1st pass N-gram model using word embedding, which is the simplified deep neural network. The class based language model (LM) can be a way to approach to this issue. We have built class based vocabulary through word embedding, by combining the class LM with word N-gram LM to evaluate the performance of LMs. In addition, we propose that part-of-speech (POS) tagging based LM shows an improvement of perplexity in all types of the LM tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.