Abstract

Let w(x) be the Laguerre weight function, 1 ≤ p < ∞, and Lpw be the space of functions f, p-th power of which is integrable with the weight function w(x) on the non-negative axis. For a given positive integer r, let denote by WrLpw the Sobolev space, which consists of r−1 times continuously differentiable functions f, for which the (r−1)-st derivative is absolutely continuous on an arbitrary segment [a, b] of non-negative axis, and the r-th derivative belongs to the space Lpw. In the case when p = 2 we introduce in the space WrL2w an inner product of Sobolev-type, which makes it a Hilbert space. Further, by lαr,n(x), where n = r, r + 1, ..., we denote the polynomials generated by the classical Laguerre polynomials. These polynomials together with functions lαr,n(x) = xn / n! , where n = 0, 1, r − 1, form a complete and orthonormal system in the space WrL2w. In this paper, the problem of uniform convergence on any segment [0,A] of the Fourier series by this system of polynomials to functions from the Sobolev space WrLpw is considered. Earlier, uniform convergence was established for the case p = 2. In this paper, it is proved that uniform convergence of the Fourier series takes place for p > 2 and does not occur for 1 ≤ p < 2. The proof of convergence is based on the fact that WrLpw ⊂ WrL2w for p > 2. The divergence of the Fourier series by the example of the function ecx using the asymptotic behavior of the Laguerre polynomials is established.

Highlights

  • Пусть w(x) — лагерровская весовая функция, 1 p < ∞, Lpw — пространство функций f, p-я степень модуля которых интегрируема с весом w(x) на неотрицательной оси

  • In the case when p = 2 we introduce in the space WLr2 an inner product of Sobolev-type, which makes it a w

  • The divergence of the Fourier series by the example w w of the function ecx using the asymptotic behavior of the Laguerre polynomials is established

Read more

Summary

Introduction

Пусть w(x) — лагерровская весовая функция, 1 p < ∞, Lpw — пространство функций f , p-я степень модуля которых интегрируема с весом w(x) на неотрицательной оси. W настоящей статье рассматривается задача о равномерной сходимости на любом отрезке [0, A] ряда Фурье по этой системе полиномов к функциям из пространства Соболева Расходимость ряда Фурье при 1 p < 2 w w установлена на примере функции ecx с помощью асимптотики полиномов Лагерра. Ключевые слова: полиномы Лагерра, ряд Фурье, скалярное произведение типа Соболева, полиномы, ортонормированные по Соболеву.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.