Abstract

The plane problem of the separation impact of a circular cylinder completely immersed in an ideal incompressible heavy liquid is considered. It is assumed that after the impact, the cylinder moves horizontally at a constant speed. An attached cavity is formed behind the body, the shape of which depends on the physical and geometric parameters of the problem. It is required to study the process of collapse of the cavity at low velocities of the cylinder, which correspond to small Froude numbers. The solution to the problem is constructed using asymptotic expansions in a small parameter, which is the dimensionless speed of the cylinder. In this case, as the characteristic speed of the problem, a value is chosen equal to the square root of the product of the radius of the cylinder and the acceleration of gravity. As a result of this choice, the indicated small parameter coincides with the Froude number, and therefore, we can assume that the asymptotics of the problem is constructed for small Froude numbers. In the leading asymptotic approximation, a mixed problem of potential theory with one-sided constraints on the surface of the body is formulated. With its help, the position of the separation points at each moment of time is determined and the time of collapse of a thin cavity is found. The results obtained can be used to solve practical problems of ship hydrodynamics, in which it is necessary to take into account the phenomenon of cavitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call