Abstract
Розглянуто суперпозиція регулярної функції ts )( і випадкового процесу tx )( , що володіє властивостями нормальності і марковости. Для заданого часового інтервалу на базі зазначеної функції вивчений функціонал згорточного типу. Запропоновано і використаний підхід, заснований на застосуванні реверсних функцій, що дало можливість отримання аналітичного виразу для твірної функції розподілу випадкових значень функціоналу-згортки. Проаналізовано статистичні властивості функціоналу-згортки. Щільність і інтегральний закон розподілу знаходяться чисельно за допомогою зворотного перетворення Лапласа для обраної регулярної функції ts )( і обраних значень часу спостереження T , декременту випадкового процесу ν і його інтенсивності 2 σ X . Показано, що збільшення параметра 2 Tσ X призводить до розширення значень функціоналу-згортки в периферійні області великих ухилень. Зменшення параметра νT призводить до локалізації значень функціоналу-згортки під флуктуаційної області. Щільність розподілу ймовірностей функціоналу-згортки має єдиний максимум, дві точки перегину і експоненціальну асимптотику на периферії.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.