Abstract

다공성 구조의 장석과 주택 시방기준으로 제작된 바닥 축열층 모르타르의 열적 특성과 소비전력을 비교하였다. 실험을 위해 온수관이 설치된 2개의 실대형 모형을 제작하였다. 자외선 열화상 온도와 온도센서를 이용하여 가열과 냉각과정에서 축열층의 온도변화를 모니터링하였다. 시험동의 축열층은 <TEX>$20-30^{\circ}C$</TEX> 구간의 온도 범위의 가열조건에서 <TEX>$2-3.5^{\circ}C$</TEX> 높은 온도를 보였고 목표 온도에 도달하는 시간이 단축되었다. 온수관에서 멀어질수록 <TEX>$4-4.8^{\circ}C$</TEX> 이상의 차이를 보였고 이는 장석 기반의 모르타르 축열층이 열적 평형에 빨리 도달하는 것을 지시한다. 가열 온도 <TEX>$30^{\circ}C$</TEX>를 기준으로 산정한 소비전력은 2.2배 차이를 보였고 단계별 온도 상승에서 소비전력은 66% 절감되었다. 냉각에서 시험동의 표면온도는 지속해서 <TEX>$2^{\circ}C$</TEX> 이상 높았고 축열로 인해 보일러의 재가동 시간이 연장되는 것을 고려하면 에너지 효율은 더 증가할 것이다. The temporal and spatial temperature distribution of the heat storage mortar made of porous feldspar was measured and the thermal properties and electricity consumption were analyzed. For the experiment, two real size chambers (control model and test model) with hot water pipes were constructed. Two large scale models with hot water pipes were constructed. The surface temperature change of the heat storage layer was remotely monitored during the heating and cooling process using infrared thermal imaging camera and temperature sensor. The temperature increased from <TEX>$20^{\circ}C$</TEX> to <TEX>$30^{\circ}C$</TEX> under the heating condition. The temperature of the heat storage layer of the test model was <TEX>$2.0-3.5^{\circ}C$</TEX> higher than the control model and the time to reach the target temperature was shortened. As the distance from the hot water pipe increased, the temperature gap increased from <TEX>$4.0^{\circ}C$</TEX> to <TEX>$4.8^{\circ}C$</TEX>. The power consumed until the surface temperature of the heat storage layer reached <TEX>$30^{\circ}C$</TEX> was 2.2 times that of the control model. From the heating experiment, the stepwise temperature and electricity consumption were calculated, and the electricity consumption of the heat storage layer of the test model was reduced by 66%. In the cooling experiment, the surface temperature of the heat storage layer of the test model was maintained <TEX>$2^{\circ}C$</TEX> higher than that of the control model. The heat storage effect of the porous feldspar mortar was confirmed by the temperature experiment. With considering that the time to reheat the heat storage layer is extended, the energy efficiency will be increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call