Abstract
중장기 기후예보는 기후역학모형의 비약적인 발전과 ENSO등의 기후현상에 대한 규명으로, 전세계적으로 정확성이 크게 향상되고 있어 중장기 유량예측의 중요한 실마리가 되고 있다. 본 연구에서는 우선 중장기 유량예측 향상을 위하여 국내에서 사용 가능한 기후정보, 즉 월간산업기상정보와 GDAPS(Global Data Assimilation and Prediction System)를 조사하고 그 정확성을 평가하였다. 월간산업기상정보와 GDAPS의 순별 예보에서 모두 초보예측보다 정확하였고 특히 갈수기보다는 홍수기에 정확성이 더 높게 나와 이 기간에는 기후예보로서 유효함을 확인하였다. 다음으로 기후예보를 이용하여 충주댐 유역에 대하여 유량예측을 수행하였다. 월간산업기상정보에서는 전체 시나리오, 교집합 시나리오, 합집합 시나리오로 나누어 유량예측에 적용하였다. 세 경우 모두 초보예측보다 평균예측점수가 높아 예측으로서 유효하였으며, 특히 홍수기에 교집합 및 합집합 시나리오의 평균예측점수가 전체 시나리오보다 높게 나타났다. GDAPS를 이용한 순별 유량예측의 경우에도 역시 갈수기보다 홍소기에 더 높은 정확성이 나타났다. 따라서 본 연구에서는 홍수기에 보다 정확한 기후예보를 사용하여 기상학적 불확실성을 줄인다면 월 유량예측의 정확성을 향상시킬 수 있음을 증명하였다. Since the accuracy of climate forecast information has improved from better understanding of the climatic system, particularly, from the better understanding of ENSO and the improvement in meteorological models, the forecasted climate information is becoming the important clue for streamflow prediction. This study investigated the available climate forecast information to improve the extended streamflow prediction in Korea, such as MIMI(Monthly Industrial Meteorological Information) and GDAPS(Global Data Assimilation and Prediction) and measured their accuracies. Both MIMI and the 10-day forecast of GDAPS were superior to a naive forecasts and peformed better for the flood season than for the dry season, thus it was proved that such climate forecasts would be valuable for the flood season. This study then forecasted the monthly inflows to Chungju Dam by using MIMI and GDAPS. For MIMI, we compared three cases: All, Intersection, Union. The accuracies of all three cases are better than the naive forecast and especially, Extended Streamflow Predictions(ESPs) with the Intersection and with Union scenarios were superior to that with the All scenarios for the flood season. For GDAPS, the 10-day ahead streamflow prediction also has the better accuracy for the flood season than for the dry season. Therefore, this study proved that using the climate information such as MIMI and GDAPS to reduce the meteorologic uncertainty can improve the accuracy of the extended streamflow prediction for the flood season.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.