Abstract

The purpose of the work is to study the developed color separation systems based on the color triangle. Similar systems are planned to be used for matrix photodetectors of digital microscopes. Within the framework of this goal, the following tasks were formulated: development of color separation systems and their study. To solve the problems of developing a color separation system for a matrix photodetector, the main provisions of colorimetry, colorimetric systems, their transformations and methods for creating color spaces were used to determine the optimal color space with a color gamut of up to 100% of the visible color, the characteristics of which do not have negative branches, which will allow them to be implemented in the system color separation based on light filters. Based on the results of a mathematical study, a universal set with a GLC-3 system was selected with an average deviation from 14 nominal color values from the Munsell atlas of 0.0083. The selected space has a color gamut of 100% visible colors and an operating range of 400 nm to 730 nm. According to the results of the calculation, it can be assumed that the GLC-3 color space is the most suitable due to the similarity of the addition curves of this system with the curves of the CIEXYZ 1931 system, where the red channel curve is also slightly higher than the green one. Further, it is planned to introduce the developed color separation system into a digital microscope for further study of the obtained color images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call