Abstract

소나무재선충병은 우리나라와 중국을 포함한 동아시아 지역뿐만 아니라 유럽 지역의 소나무림에도 막대한 피해를 주고 있다. 소나무재선충에 의한 피해는 임분 내에서 다발적으로 발현되고 급진적으로 진행되고 있으나 기존의 현장조사 방법은 광범위한 지역에 대한 피해목 탐지에 한계가 있다. 본 연구에서는 시계열 초분광 항공영상을 이용하여 소나무재선충병 피해목을 추출하고, 추출된 자료를 이용하여 소나무재선충병 확산 특성을 분석하고자 하였다. 6월, 9월, 10월에 1 m 공간해상도의 초분광 항공사진을 취득하였다. 9월 영상의 Normalized Difference Vegetation Index(NDVI)와 Vegetation Index green(VIgreen)을 이용하여 소나무재선충 피해목을 추출하였다. 추출된 피해목을 잎이 있는 고사목과 잎이 없는 고사목으로 구분하였으며, 6월, 9월, 10월 영상의 분광반사값을 비교하여 9월과 10월에 새로 발생한 피해목을 추출하였다. 추출된 피해목의 시계열 분포를 토대로 공간통계분석 기법을 활용하여 초분광 항공사진 촬영지역 내 소나무재선충병 피해목의 확산 특성을 분석하였다. 그 결과, 대상지 내 소나무재선충병 피해목은 총 2,262본이 추출되었으며, 피해시기에 따라 잎 있는 고사목(작년 피해목)은 604본, 9월과 10월에 새로 발생한 피해목은 각각 300본, 101본으로 분류되었다. 구축된 자료를 이용한 공간 분포형 분석 결과, 작년 피해목과 당년 피해목 모두 집중분포 형태로 나타났으며, 최근거리 분석 결과, 당해년도 고사목의 약 80%는 전년도 고사목 주변 60 m 이내에서 발생하는 것으로 나타났다. Pine wilt disease has greatly damaged pine forests not only in East Asia including South Korea and China, but also in European region. The damage caused by pine wood nematode (Bursaphelenchus xylophilus) is expressed in bundles within stands and rapidly spreading, however, present field survey methods have limitations to detecting damaged trees at regional level. This study extracted the damaged trees by pine wilt disease using time series hyperspectral aerial photographs, and analyzed their distribution characteristics. Hyperspectral aerial photographs of 1 meter spatial resolution were obtained in June, September, and October. Damaged trees by pine wilt disease were extracted using Normalized Difference Vegetation Index (NDVI) and Vegetation Index green (VIgreen) of the September photograph. Among extracted damaged trees, dead trees with leaves and without leaves were classified, and the spectral reflectance values from the photographs obtained in June, September, and October were compared to extract new outbreaks in September and October. Based on the time series dispersion of extracted damaged trees, nearest neighbor analysis was conducted to analyze distribution characteristics of the damaged trees within the region where hyperspectral aerial photographs were acquired. As a result, 2,262 damaged trees were extracted in the study area, and 604 dead trees (dead trees in last year) with leaves in relation to the damaged time and 300 and 101 newly damaged trees in September and October were classified. The result of nearest neighbor analysis using the data shows that aggregated distribution was the dominant pattern both previous and current year in the study area. Also, 80% of the damaged trees in current year were found within 60 m of dead trees in previous year.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.