Abstract

Coenzyme NAD+/NADH, a major cofactor of dehydrogenases, functions as an autorecycling redox agent in biological systems, which is exemplified by enantioselective reduction of pyruvate to L-lactate and oxidation of glyceraldehyde-3-phosphate to 1, 3-bisphosphoglycerate as is observed in anaerobic glycolysis. This article reviews biomimetic asymmetric reduction and oxidation in NAD+/NADH model systems. The first part outlines highly enantioselective reduction of benzoylformate, a lactate analog, with representative NADH model compounds mimicking biological reduction in lactate dehydrogenase. In this section, the well-developed model reactions are grouped based on the types of NADH models ; one having a chiral center at the C-4 position of its 1, 4-dihydronicotinoyl ring and the other good for recycling use. The latter half describes the detailed history on the less developed biomimetic oxidation with NAD+ model compounds. This section classifies the model reactions based on the types of model substrates to summarize the oxidation of alcohols, aldehydes, and formates into aldehydes (or ketones), carboxylates, and carbon dioxide, respectively, with regioselective formation of the corresponding NADH model compounds as analogous reactions in alcohol-, glyceraldehyde-3-phosphate-, and formate dehydrogenases

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.