Abstract

Soluble solid content (SSC) is a major quality index of kiwifruits. Visible near-infrared (Vis/NIR) hyperspectral imaging with the genetic algorithm (GA) was adopted in this study to realize the non-destructive prediction of kiwifruit SSC. A laboratory Vis/NIR hyperspectral imaging system was established to collect the hyperspectral imaging of 120 kiwifruit samples at a range of 400–1100 nm. The average reflectance spectral data of the region of interest of the kiwifruit hyperspectral imaging were obtained after different preprocessing method, namely, Savitzky–Golay smoothing (SG), multiplicative scatter correction (MSC), and their combination method. The prediction models of partial least squares regression, multiple linear regression, and least squares support vector machine (LS-SVM) were built for determining kiwifruit SSC by using the average reflectance spectral data and effective feature wavelength variables selected by GA, respectively. The results show that SG+MSC is the best preprocessing method. The precisions of the prediction models built using the effective feature wavelength variables selected by GA are higher than that established using full average reflectance spectral data. The GA-LS-SVM prediction model has a best performance with correlation coefficient for prediction (R=0.932) and standard error of prediction (SEP=0.536° Bx) for predicting kiwifruit SSC. The prediction accuracy has been improved by 5.6% compared with that of the prediction models established by using the full-band reflectance spectral data. This study provides an effective method for non-destructive detection of kiwifruit SSC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.