Abstract

The purposes of this study were to determine the functions of actions of the limbs during each of the three support phases of the triple jump and their relationships with the performance of the triple jump. Four elite male triple jumpers were participated as subjects. The Pearson product moment correlation coefficient were used to determine and compare the relationships between the change in each component of the normalized angular momentum of the whole body about center of gravity and the actions of the extremities during different support phases. A level of significance at <TEX>$\alpha$</TEX>=.05 was set. After analyzing the angular momentum and correlation during support phase of the hop, step, and jump, the following findings are obtained: The actions of the arms created a side-somersaulting angular momentum about the whole body center of gravity toward the side of the free leg during the support phase of the step, and a somersaulting angular momentum about the whole body center of gravity during each support phase. The action of the free leg created a somersaulting angular momentum about the whole body center of gravity during the support phases of the hop and step.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.