Abstract

In order to improve the structural safety and light-weight design of aircraft floats, natural frequency and static stress analysis are performed under water and ground landing conditions. A finite element mesh based on the design configuration of light aircraft floats is modeled, and simplified water and ground landing loads are applied to this model. The natural frequency and stress analysis of aluminum-alloy floats are carried out first. Then, the structural performance of the floats is re-analyzed in the case of laminated composites, and the numerical results are compared each other. It is concluded that, by tailoring the laminated composites with respect to stacking sequence and ply thickness, the structural safety of the light-weight floats can be improved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.