Abstract

An irreversible thermodynamics theory is developed for the constitutive and damage evolution equations for elastic-plastic-damaging materials with special emphasis on the anisotropic aspect of material damage. The internal state of the material is described first by an isotropic hardening variable r, a second rank symmetric damage tensor D and a scalar damage variable β related to the further development of the damage. The effect of crack closure under compression is described by introducing a modified elastic strain tensor ee.The Helmholtz free energy ψ is decomposed into the terms related to global elastic deformation of the damaged material, local elastic distortion due to plastic deformation, and the surface energy generated by material damage. A dissipation potential function F in the space of the conjugate forces of the internal state variables is expressed as the sum of the plastic and the damage parts. The constitutive and evolution equations resulting from these potentials are applied to elucidate the damage process of tubular specimens of spheroidized graphite cast iron under uniaxial tension and torsion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.