Abstract
본 논문에서는 파티클 필터(Particle Filter)를 사용한 모바일 감시 로봇을 위한 실시간 움직임 추정 알고리즘을 제안한다. 파티클 필터는 몬테카를로(Monte Carlo) 샘플링 방법을 기반으로 사전분포확률(Prior distribution probability)와 사후분포확률(Posterior distribution probability)을 가지는 베이지안 조건 확률 모델(Bayesian conditional probabilities model)을 사용하는 방법이다. 그러나 대부분의 파티클 필터에서는 초기 확률밀도(Prior probability density)를 임의로 정의하여 사용하지만, 본 논문에서는 Sum of Absolute Difference (SAD)를 이용하여 초기 확률밀도를 구하고, 이를 파티클 필터에 적용하여 모바일 감시 로봇 환경에서 임의로 움직이는 물체를 강인하게 실시간으로 추정하고 추적하는 시스템을 구현하였다. This paper presents the motion estimation algorithm on real-time for mobile surveillance robot using particle filter. the particle filter that based on the monte carlo's sampling method, use bayesian conditional probability model which having prior distribution probability and posterior distribution probability. However, the initial probability density was set to define randomly in the most of particle filter. In this paper, we find first the initial probability density using Sum of Absolute Difference(SAD). and we applied it in the partical filter. In result, more robust real-time estimation and tracking system on the randomly moving object was realized in the mobile surveillance robot environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Korean Institute of Intelligent Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.