Abstract
기상과 시간의 제약을 받지 않고 영상을 획득할 수 있는 레이더 위성 영상은 오랫동안 홍수 탐지 분야에서 이용되어 왔다. 많은 연구들이 홍수를 효율적으로 탐지하기 위하여 다양한 기법들을 적용하였고 그 결과 홍수 지역의 탐지율은 비약적으로 상승하였다. 홍수는 침수피해를 유발하는 특성상 침수지와 비침수지의 경계 부분이 뚜렷하게 구분돼야하고 아주 세밀한 탐지가 가능해야한다. 이를 위해서는 레이더 자체의 해상도가 좋아야 할 뿐만 아니라 필터링 과정에서 해상도 저하를 최소화해야 한다. 레이더 위성의 해상도는 기술이 발전함에 따라 고해상도의 위성이 증가하고 있지만 필터링 기법을 달리하여 홍수 탐지의 정확도 및 효율성을 비교하여 홍수탐지에 적합한 필터링을 찾는 연구는 부족한 것이 현실이다. 본 연구에서는 Lee, Frost, NL-means(Non-Local means) 필터링을 위성레이더 영상에 적용하였고 필터링된 영상을 이용하여 홍수 지도를 생성한 뒤 각각의 결과를 비교하였다. Frost와 NL-means 필터는 Lee 필터에 비해 스펙클 노이즈를 저감하는데 효과적이었다. 하지만 Frost 필터의 경우에는 해상도의 저하가 심하다는 문제가 있었다. NL-means 필터는 다른 필터에 비해 shadow 현상을 효과적으로 제거하지 못하였고 이로 인해 잘못 탐지되는 픽셀이 존재한다는 문제가 있었다. 그럼에도 전체 영상의 픽셀 수에 비해 shadow 효과의 영향을 받아 오탐지되는 픽셀 수가 많지 않기 때문에 NL-means 필터를 이용한 경우가 가장 높은 홍수 탐지율을 보였다. 테스트 지역에서 필터링이 적용되지 않은 영상을 이용하여 홍수를 탐지한 경우 카파계수가 0.55로 나타났고 Lee, Frost, NL-means 필터를 적용한 경우 각각 0.64, 0.74, 0.81로 나타났다. 또한 NL-means 필터를 적용한 영상은 해상도의 변화가 거의 없는 상태에서 노이즈를 효과적으로 감소하였기 때문에 침수지와 비침수지의 경계를 가장 명확하게 구분할 수 있어 효과적으로 분석 결과를 도출하였다. Due to the characteristics of microwave signals, Radar satellite image has been used for flood detection without weather and time influence. The more methods of flood detection were developed, the more detection rate of flood area has been increased. Since flood causes a lot of damages, flooded area should be distinguished from non flooded area. Also, the detection of flood area should be accurate. Therefore, not only image resolution but also the filtering process is critical to minimize resolution degradation. Although a resolution of radar images become better as technology develops, there were a limited focused on a highly suitable filtering methods for flood detection. Thus, the purpose of this study is to find out the most appropriate filtering method for flood detection by comparing three filtering methods: Lee filter, Frost filter and NL-means filter. Therefore, to compare the filters to detect floods, each filters are applied to the radar image. Comparison was drawn among filtered images. Then, the flood map, results of filtered images are compared in that order. As a result, Frost and NL-means filter are more effective in removing the speckle noise compared to Lee filter. In case of Frost filter, resolution degradation occurred severly during removal of the noise. In case of NL-means filter, shadow effect which could be one of the main reasons that causes false detection were not eliminated comparing to other filters. Nevertheless, result of NL-means filter shows the best detection rate because the number of shadow pixels is relatively low in entire image. Kappa coefficient is scored 0.81 for NL-means filtered image and 0.55, 0.64 and 0.74 follows for non filtered image, Lee filtered image and Frost filtered image respectively. Also, in the process of NL-means filter, speckle noise could be removed without resolution degradation. Accordingly, flooded area could be distinguished effectively from other area in NL-means filtered image.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.