Abstract

The hydrodynamic instability of the three-dimensional boundary-layer over a rotating disk has been numerically investigated for these flows; Ro = -1. -0.5. and 0, using linear stability theory. Detailed numerical values of the disturbance wave number, wave frequency, azimuth angle, radius (Reynolds number. Re) and other characteristics have been calculated for the pre-swirl flows. On the basis of Ekman and Karman boundary layer theory, the instability of the pre-swirl flows have been investigated for the unstable criteria. The disturbance will be relatively fast amplified at small Re and within wide bands of wave number compared with previously known Karman boundary-layer results. The flow (Ro =-0.5) is found to be always stable for a disturbance whose dimensionless wave number is greater than 0.9. It has a larger range of unstable interval than Karman boundary layer and can be unstable at smaller Re.<br/>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.