Abstract

텍스트마이닝 연구의 기본적인 난제는 기존 텍스트 표현모델이 자연어 문장으로 기술된 텍스트 데이터로부터 의미 또는 개념 정보를 표현하지 않는데 기인한다. 기존 텍스트 표현모델인 벡터공간 모델(vector space model), 불리언 모델(Boolean model), 통계 모델(statistical model), 텐서공간 모델(tensor space model) 등은 'Bag-of-Words' 방식에 바탕을 두고 있다. 이러한 텍스트 모델들은 텍스트에 포함된 단어와 그것의 출현 횟수만으로 텍스트를 표현하므로, 단어의 함축 의미, 단어의 순서 및 텍스트의 구조를 전혀 표현하지 못한다. 대부분의 텍스트 마이닝 기술은 대상 문서를 'Bag-of-Words' 방식의 텍스트 모델로 표현함을 전제로 하여 발전하여 왔다. 하지만 오늘날 빅데이터 시대를 맞이하여 방대한 규모의 텍스트 데이터를 보다 정밀하게 분석할 수 있는 새로운 패러다임의 표현모델을 요구하고 있다. 본 논문에서 제안하는 텍스트 표현모델은 개념공간을 문서 및 단어와 동등한 매핑 공간으로 상정하여, 그 세 가지 공간에 대한 연관 관계를 모두 표현한다. 개념공간의 구성을 위해서 위키피디어 데이터를 활용하며, 하나의 개념은 하나의 위키피디어 페이지로부터 정의된다. 결과적으로 주어진 텍스트 문서집합을 의미적으로 해석이 가능한 3차 텐서(3-order tensor)로 표현하게 되며, 따라서 제안 모델을 텍스트 큐보이드 모델이라 명명한다. 20Newsgroup 문서집합을 사용하여 문서 및 개념 수준의 클러스터링 정확도를 평가함으로써, 제안 모델이 'Bag-of-Word' 방식의 대표적 모델인 벡터공간 모델에 비해 우수함을 보인다. Current text mining techniques suffer from the problem that the conventional text representation models cannot express the semantic or conceptual information for the textual documents written with natural languages. The conventional text models represent the textual documents as bag of words, which include vector space model, Boolean model, statistical model, and tensor space model. These models express documents only with the term literals for indexing and the frequency-based weights for their corresponding terms; that is, they ignore semantical information, sequential order information, and structural information of terms. Most of the text mining techniques have been developed assuming that the given documents are represented as 'bag-of-words' based text models. However, currently, confronting the big data era, a new paradigm of text representation model is required which can analyse huge amounts of textual documents more precisely. Our text model regards the 'concept' as an independent space equated with the 'term' and 'document' spaces used in the vector space model, and it expresses the relatedness among the three spaces. To develop the concept space, we use Wikipedia data, each of which defines a single concept. Consequently, a document collection is represented as a 3-order tensor with semantic information, and then the proposed model is called text cuboid model in our paper. Through experiments using the popular 20NewsGroup document corpus, we prove the superiority of the proposed text model in terms of document clustering and concept clustering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.