Abstract

2D 영상 이미지를 인식하는데 있어서, 테스트 이미지를 입력 받는 카메라의 설치 공간 및 설정 상황에 따라 밝기, 명암, 빛의 방향 등과 같은 인식의 성능에 영향을 끼칠 수 있는 요소들이 매우 많이 존재한다. 본 논문은 카메라가 위치한 환경 상의 최소의 샘플 이미지를 가지고, 그 환경에서 입력되는 영상의 인식 성공률을 높일 수 있는 적응형 얼굴 인식 방법을 제안하고 있다. 제안한 적응형 얼굴 인식은 두 개의 부분으로 구성되어 있는데, 하나는 환경 적응을 하기 위한 부분이고, 다른 하나는 얼굴 인식을 수행하는 부분이다. 전자인 환경 적응 모듈에서는 안정 상태 유전 알고리즘을 사용하여 인식기가 최적의 성능을 낼 수 있는 필터 조합과 필터 파라메터와 특징 벡터 집합 차원을 결정하고, 후자인 얼굴 인식 모듈에서는 그 결과를 사용하여 얼굴 인식 결과를 확인한다. 얼굴 인식 과정에서 이미지 사이의 유사도를 측정하기 위해서 가보 웨이블릿을 사용하였고, 인식의 결과를 도출하는 과정에서는 k-Nearest Neighbor을 사용하였다. 적응형 얼굴 인식 방법을 테스트 하기위해, 사인 함수의 가중치를 사용한 명암 노이즈, 임펄스 노이즈, 복합 노이즈에 관하여 각각 실험을 하였고, 진화 후에는 일반적으로 발생할 수 있는 노이즈에 대한 급격한 인식률 저하를 방지할 수 있음을 확인하였다. There are a lot of influences, such as location of camera, luminosity, brightness, and direction of light, which affect the performance of 2-dimensional image recognition. This paper suggests an adaptive method for face-image recognition in noisy environments using evolvable filtering and feature extraction which uses one sample image from camera. This suggested method consists of two main parts. One is the environmental-adjustment module which determines optimum sets of filters, filter parameters, and dimensions of features by using "steady state genetic algorithm". The other another part is for face recognition module which performs recognition of face-image using the previous results. In the processing, we used Gabor wavelet for extracting features in the images and k-Nearest Neighbor method for the classification. For testing of the adaptive face recognition method, we tested the adaptive method in the brightness noise, in the impulse noise and in the composite noise and verified that the adaptive method protects face recognition-rate's rapidly decrease which can be occurred generally in the noisy environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.