Abstract

The purpose of this research is to analyze the effects of Dansam and Sappan wood extract to perform combination dyeing on silk fabrics, with respect to color changes, fastness (washing, dry cleaning, perspiration, rubbing and light fastness), and functionality (antibacterial activity and deodorization). Combination dyeing was performed by first combining Dansam with Sappan wood, then Sappan wood with Dansam, in these orders. Given the changes in the combination ratio, pre-mordant treatment was performed. Looking at the surface colors of each dye, Dansam generally produces YR color series, while Sappan wood produces YR, R, and RP color series. The effects of changing the order in which combination dying was performed on the surface colors were as follows. First, combination dyeing (A) was performed by using Dansam before Sappan wood, to produce YR and R color series. Then combination dyeing (B) was performed by using Sappan wood before Dansam, to produce YR, R, and RP color series. By visual inspections, more similar color changes of the combination dyeing were noticed with the post-dyeing material rather than the pre-dyeing material. Therefore, it was presumably confirmed that surface color changes of combination dyeing were greatly influenced by the post-dyeing color. Individual dyeing tests for fastness showed that Dansam was comparatively superior to Sappan wood, which demonstrated lower fastness to washing, dry cleaning, perspiration, and light, relatively. The fastness of combination dyed samples was shown middle, but similar fastness to the post-dye material, The fastness of (B) method was higher than (A) method in the washing and light fastness. This confirms that color fastness from combination dyeing was considerably influenced by the post-dye material. It was found that all dyed samples had a very high bacterial reduction rate of 99.9% and high deodorization rate of 95%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.