Abstract

A coagulation-flocculation (CF) process using aluminum sulfate as a coagulant was employed to treat highly suspended solids in tunnel wastewater. Response surface methodology (RSM) based on a Box-Behnken design was applied to evaluate the effects of three factors (coagulant dosage, pH and temperature) on total suspended solids (TSS) removal efficiency as well as to identify optimal values of those factors to maximize removal of TSS. Optimal conditions of coagulant dosage and pH for maximum TSS removal changed depending on the temperature (). As temperature increased, the amount of coagulant dosage and pH level decreased for maximum TSS removal efficiency during the CF process. Proper adjustment of optimal pH and coagulant dosage to accommodate temperature fluctuations can improve TSS removal performance of the CF process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call