Abstract

The problem is considered related to increase of the operational safety of industrial facilities made of composite materials by means of an a priori assessment of the maximum service life. Two tasks are being solved: development of the new methods and means of non-destructive testing allowing to identify the defects that appear in the process of testing products with various loads and in the process of their operation; development of the new methods and means for assessing service life of the products based on the results of non-destructive testing. The first problem is being solved by the development of optical-thermographic non-destructive testing, including the technologies of ultrasonic thermotomography and electric force thermography, which determine the state of the object by dynamic temperature fields and optical control technology based on the fiber-optic sensors that measure the amount of material internal deformation under a force effect on the structure. Solution to the second problem is based on the use of neural network analysis (artificial neural networks) for assessment and prediction of the service life using the results of non-destructive testing with preliminary training of the neural network. An estimate was obtained by the experimental studies related to the error in determining the products service life, which is 12.6 %. The implementation of the proposed approach will allow to create the new technologies for predicting the service life of elements and structures made of composite materials using the results of non-destructive testing, which will provide an additional opportunity for developing practical recommendations on the confirmation or extension of the service life and improvement of safety for structures operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call