Abstract
A modern gas turbine engine must meet a large list of requirements that are included in the parameters, resource and per-formance indicators. To increase the service life of a gas turbine engine at elevated temperatures of the gas flow, it is expendable to use thermal barrier protection on explosive structural materials. Cyclic tests of materials and thermal barrier coatings of gas tur-bine engines at temperatures above 1500 ºС are proposed to be carried out on a stand in which a hot gas flow is generated by an air-methane burner. In order to reduce the emission standards for nitrogen and carbon oxides, it is necessary to develop and use in stationary gas turbine engines fundamentally new technologies for organizing combustion and, as a result, designs of combustion chambers. From a detailed analysis of the current requirements, it follows that the newly designed low-emission combustion chamber for advanced gas turbine engines and installations should be accompanied by an increase in gas temperature by 200–300 K, an increase in the durability of the flame tube by 3–4 times, with a twofold decrease in the proportion of air for cooling the walls, a twofold or more reduction in the emission of harmful substances. In this article, heat-resistant coatings of structural elements of gas turbines are considered. The concepts of low-emission fuel combustion are described by organizing the working process according to the "DLE" - Dry Low Emission scheme. As an alter-native method for organizing low-emission combustion, stoichiometric combustion is proposed, which also makes it possible to provide the required temperature of the gas jet. A review of low-emission combustion chambers has been carried out. The existing methods of cooling the combustion chambers of gas turbine and liquid rocket engines are described. The analysis of the collected information made it possible to determine the concept of designing a high-temperature air-methane burner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Perm National Research Polytechnic University Aerospace Engineering Bulletin
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.