Abstract

The flexible mathematical thinking - the ability to generate and connect various representations of concepts - is useful in understanding mathematical structure and variation in problem solving. In particular, the flexible mathematical thinking with the inventive mathematical thinking, the original mathematical problem solving ability and the mathematical invention is a core concept, which must be emphasized in all branches of mathematical education. In this paper, the author considered a case of flexible mathematical thinking with an inventive problem solving ability shown by his student via real analysis courses. The case is on the proofs of the equivalences of three different definitions on the concept of limit superior shown in three different real analysis books. Proving the equivalences of the three definitions, the student tried to keep the flexible mathematical thinking steadily.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.